

Encoding FIX Using ASN.1
v0.9

RELEASE CANDIDATE 1: MAY 28, 2013

THIS DOCUMENT IS A RELEASE CANDIDATE FOR A PROPOSED FIX TECHNICAL STANDARD. A RELEASE CANDIDATE HAS BEEN

APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS AN INITIAL STEP IN CREATING A NEW FIX TECHNICAL STANDARD. POTENTIAL

ADOPTERS ARE STRONGLY ENCOURAGED TO BEGIN WORKING WITH THE RELEASE CANDIDATE AND TO PROVIDE FEEDBACK TO THE

GLOBAL TECHNICAL COMMITTEE AND THE WORKING GROUP THAT SUBMITTED THE PROPOSAL. THE FEEDBACK TO THE RELEASE

CANDIDATE WILL DETERMINE IF ANOTHER REVISION AND RELEASE CANDIDATE IS NECESSARY OR IF THE RELEASE CANDIDATE CAN BE

PROMOTED TO BECOME A FIX TECHNICAL STANDARD DRAFT.

High Performance Working Group

February 2013

© Copyright 2013 FIX Protocol Limited

2

Document History

Revison Date Author(s) Comments

0.9 February 2013 Alessandro Triglia, OSS Nokalva Draft submitted to Global Technical
Committee for review.

0.9 RC1 May 28, 2013 Promoted to Release Candidate 1 for public
release.

3

CONTENTS

1 Introduction ..5

2 References ..6

3 Definitions ..7

4 General provisions ..9

4.1 Generation of the ASN.1 schema ...9

4.2 ASN.1 encoding attributes ... 10

4.3 Generation of ASN.1 names .. 14

5 Mapping of FIX datatypes .. 16

5.1 Datatypes explicitly defined via <datatype> elements .. 16

5.2 Datatypes implicitly defined via <field> elements ... 17

5.3 Datatype mapping to ASN.1 types .. 23

5.3.1 Determination of the target ASN.1 type expression corresponding to a <datatype> element 23

5.3.2 Determination of the target ASN.1 type expression corresponding to a <field> element 26

5.3.3 Determination of the target ASN.1 type expression corresponding to a <fieldref> element 26

5.4 Supporting ASN.1 types ... 26

5.4.1 The Decimal-fixedN-S types .. 27

5.4.2 The Decimal-fixedN-nonneg-S types ... 27

5.4.3 The Decimal-varN-S types ... 28

5.4.4 The Decimal-varN-nonneg-S types .. 29

5.4.5 The UTCDateOnly-E types ... 30

5.4.6 The UTCTimeOnly-U types ... 31

5.4.7 The UTCTimeStamp-U-E-S types ... 31

5.4.8 The LocalMktDate-E types ... 33

5.4.9 The TZTimeOnly-U types .. 33

5.4.10 The TZTimeStamp-U-E-S types .. 34

5.4.11 The BinaryString type ... 36

5.4.12 The XMLString type .. 37

4

5.4.13 The Duration type ... 37

5.4.14 The YearAndMonth type ... 37

5.5 Datatype mapping summary ... 37

6 Mapping of FIX messages .. 40

7 Mapping of a FIX component .. 45

5

1 Introduction
This technical specification contains provisions for the mapping of the content of the FIX Unified Repository to
ASN.1 for the purpose of enabling the exchange of FIX messages between two endpoints in an efficient binary
encoding in the presence of high-performance requirements.

ASN.1 is a family of International Standards for the definition and encoding of messages, jointly developed and
published by the International Organization for Standardization and the International Telecommunication Union.
The mapping specified in this technical specification can be used for any FIX message and generates a set of
definitions in the ASN.1 notation. Any standard set of encoding rules such as OER, BER, or PER can then be
applied to those ASN.1 definitions to produce efficient binary encodings. A variety of software tools are available
that facilitate the development of applications that handle ASN.1 messages. For example, an ASN.1 compiler
may take an ASN.1 schema as input and generate source code automatically.

The mapping procedure specified in this technical specification can be applied either to the original FIX Unified
Repository or to any other XML document that contains a <fix> element with the same syntax as the one in
the FIX Unified Repository. For example, a user of FIX could take a subset of the Repository, apply one or more
scenarios to some messages, add encoding attributes to a few fields, and finally apply the mapping procedure to
the resulting XML document, thus producing an ASN.1 schema.

ASN.1 has several standard encoding rules, each with different characteristics. BER is byte-oriented and largely
self-describing in that it carries the tag numbers of every field within the encoded message, and adds a length
prefix in front of each field and each group of fields. PER is bit-oriented and very compact and tries to include in
the encoded message only the information strictly necessary to decode it (for example, the length of a string
field is not included in the encoded message if the length is constant and specified in the schema). OER is byte-
oriented and optimized for speed, though not as compact as PER. XER is an XML-based encoding and can be
used when human-readability is of the greatest concern and encoding/decoding speed is not an issue. In
summary, among the three main binary encoding rules of ASN.1, OER is the fastest, PER is the most compact
(but not as fast as OER), and BER may be preferred in certain situations, such as when it is important that an
encoded message be understandable (i.e., fully or partially decodable) even by someone who does not have the
exact ASN.1 schema available.

This technical specification is intended to be used in an algorithmic fashion. Clause 4 contains general provisions
and drives the whole mapping procedure. Clause 5 (mapping of FIX datatypes) and clause 6 (mapping of FIX
messages) are invoked by subclause 4.1.5. Clause 7 (mapping of a FIX component) is invoked by subclause 6.2.2
and by itself (recursively).

6

2 References

– ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.690 (2008) | ISO/IEC 8825-1:2008, Information technology – ASN.1encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER).

– ITU-T Recommendation X.691 (2008) | ISO/IEC 8825-2:2008, Information technology – ASN.1encoding
rules: Specification of Packed Encoding Rules (PER).

– ITU-T Recommendation X.693 (2008) | ISO/IEC 8825-4:2008, Information technology – ASN.1 encoding
rules: XML Encoding Rules (XER)

– NTCIP 1102-2004 v01.15, National Transportation Communications for ITS Protocol, Octet Encoding
Rules (OER), Base Protocol, AASHTO, ITE, and NEMA, October 2005

7

3 Definitions

abstract value: A value whose definition is based only on the type used to carry some semantics, independently
of how it is represented in any encoding.

NOTE – Examples of abstract values are the values of the integer type, the boolean type, a character string type, or of a type
which is a sequence (or a choice) of an integer and a boolean.

ASN.1 schema: A collection of one or more ASN.1 modules

BER: Basic Encoding Rules, a set of ASN.1 encoding rules where each field or group of fields in the encoded
message is preceded by a length and a tag

bit string type: A simple type whose distinguished values are an ordered sequence of zero, one or more bits

boolean type: A simple type with two distinguished values

character string types: Simple types whose values are strings of characters from some defined character set

choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types

constraint: A notation which can be used in association with a type, to define a subtype of that type

DER: Distinguished Encoding Rules, a variant of BER in which each abstract value is encoded in exactly one way

encoding: The bit-pattern resulting from the application of a set of encoding rules to an abstract value

ASN.1 encoding attribute: Each of the attributes of an encoding information element that is present inside an
element within the source <fix> element and affects the mapping to ASN.1

encoding information element: An element that is present inside an element within the source <fix> element
and affects the mapping to one or more FIX encoding technologies

(ASN.1) encoding rules: Rules which specify the representation during transfer of the values of ASN.1 types.
Encoding rules also enable the values to be recovered from the representation, given knowledge of the type

enumerated types: Simple types whose values are given distinct identifiers as part of the type notation

integer type: A simple type with distinguished values which are the positive and negative whole numbers,
including zero (as a single value)

lexical item: A named sequence of characters which is used in forming the ASN.1 notation

module: One or more instances of the use of the ASN.1 notation for type, value, value encapsulated using the
ASN.1 module notation

8

null type: A simple type consisting of a single value, also called null

OER: Octet Encoding Rules, a byte-oriented set of encoding rules optimized for encoding/decoding speed

PER: Packed Encoding Rules, a bit-oriented set of encoding rules optimized for compactness. There are two
variants of PER, called PER Aligned and PER Unaligned, respectively.

octet string type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits

sequence types: Types defined by referencing a fixed, ordered list of types (some of which may be declared to
be optional); each value of the sequence type is an ordered list of values, one from each component type.
Where a component type is declared to be optional, a value of the sequence type need not contain a value of
that component type

sequence-of types: Types defined by referencing a single component type; each value in the sequence-of type is
an ordered list of zero, one or more values of the component type

source <fix> element: An XML element named <fix> (usually, but not necessarily, located in the FIX Unified
Repository) that is used as the source of the mapping to ASN.1

tag: Additional information, separate from the abstract values of the type, which is associated with every ASN.1
type and which can be changed or augmented by a type prefix

tagging: Assigning a new tag to a type, replacing or adding to the existing (possibly the default) tag

transfer syntax: The set of bit strings used to exchange the abstract values in an abstract syntax, usually
obtained by application of encoding rules to an abstract syntax

type: A named set of values

type reference name: A name associated uniquely with a type within some context

XER: XML Encoding Rules, a set of encoding rules that encode the values in XML. There are two variants of XER,
called Basic XER and Extended XER (E-XER), respectively.

9

4 General provisions

4.1 Generation of the ASN.1 schema
NOTE – The mapping of the content, or part of the content, of the FIX Unified Repository to ASN.1 generates an ASN.1
schema consisting of one or more ASN.1 modules, each containing one or more ASN.1 type assignments. This technical
specification does not restrict the use of white space (including end-of-line characters) and the inclusion of ASN.1
comments between adjacent ASN.1 tokens, other than by requiring conformance to ITU-T Rec. X.680.

4.1.1 The mapping process specified in this technical specification takes as input a <fix> element (called the
source <fix> element), whose syntax and semantics are identical to those of the <fix> element of the FIX
Unified Repository v. 5.0 SP2. The mapping process generates one or more ASN.1 modules, each containing one
or more ASN.1 type assignments.

4.1.2 The source <fix> element can be one of the following:

a) a <fix> element that is part of a FIX Unified Repository instance;
b) a <fix> element derived from (a) by excluding part of its content (e.g., keeping only the messages

belonging to one or more specified FIX sections and/or FIX categories);
c) a <fix> element derived from (a) or (b) by applying one or more specified scenarios to it;
d) any <fix> element whose syntax and semantics are identical to those of the <fix> element of the FIX

Unified Repository v. 5.0 SP2.

4.1.3 The name of each generated ASN.1 module shall consist of a root chosen by the implementation of the
mapping or by its user concatenated with a suffix as specified in subclause 4.1.6. The same root shall be used for
the names of all the ASN.1 modules generated by the mapping process from the source <fix> element. The
concatenation of the root and each one of the suffixes specified in subclause 4.1.6 shall be a valid ASN.1 module
name according to ITU-T Rec. X.680, 12.5.

NOTE 1 – A valid ASN.1 module name is a string that:

a) begins with an uppercase letter;
b) consists of one or more uppercase letters (A..Z), lowercase letters (a..z), digits (0..9), and hyphens (-);
c) does not contain two or more consecutive hyphens; and
d) does not end with a hyphen.

NOTE 2 – There is no requirement that object identifiers be specified or generated for the generated ASN.1 modules along
with the module names.

4.1.4 Every ASN.1 module shall specify AUTOMATIC TAGS and shall not specify EXTENSIBILITY IMPLIED.

4.1.5 ASN.1 type assignments shall be generated from the source <fix> element as specified in clauses 5 and
6, in this order. Within each of those clauses, ASN.1 type assignments shall be generated strictly in the order
specified therein. No other ASN.1 type assignments shall be generated.

NOTE – The ASN.1 name generation rules specified in subclause 4.3 and invoked in multiple subclauses of this technical
specification are sensitive to the order in which they are invoked. Therefore, if the mapping process is performed without

10

following the prescribed order of type assignment generation, some of the names generated within the ASN.1 schema will
be different from those generated by a conforming implementation of the mapping.

4.1.6 Each generated ASN.1 type assignments shall be placed in an ASN.1 module determined as follows:

• all type assignments generated from <datatype> and <field> elements according to clause 5 and its
subclauses shall be placed in one ASN.1 module whose name shall have the suffix "-DATATYPES";

• all type assignments generated from <message> elements according to clause 6 shall be placed in one
ASN.1 module whose name shall have the suffix "-MESSAGES";

• all type assignments generated from <component> elements according to clause 7 shall be placed in
one ASN.1 module whose name shall have the suffix "-COMPONENTS".

4.1.7 An IMPORT clause shall be present in each ASN.1 module containing references to type assignments in
other modules, enabling those references as required by ITU-T Rec. X.680, clause 13.

EXAMPLE

The following ASN.1 module could be generated by the mapping process.

FIX-5-0-SP2-DATATYPES DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Int ::= INTEGER
 --generated from a <datatype> element

Length ::= INTEGER (0..MAX)
 --generated from a <datatype> element

AdvSide-enum ::= ENUMERATED {
 buy,
 sell,
 trade,
 cross,
 ...
}
 --generated from a <field> element
 --containing a sequence of <enum> elements

-- ... many other type assignments ...

END

4.2 ASN.1 encoding attributes
4.2.1 Within the source <fix> element, encoding information is carried by a set of encoding attributes within
encoding information elements. The encoding information elements that affect the mapping to ASN.1 are the
elements <encodingInfo>, <ASN1>, and <XML>.

11

4.2.2 The <encodingInfo> element may contain common encoding attributes applicable to all standard FIX
encodings. The <ASN1> element may contain encoding attributes specific to ASN.1 as well as common encoding
attributes. The <XML> element may contain encoding attributes specific to FIXML. All the attributes of an
encoding information element are optional. An encoding information element may be empty.

4.2.3 Each <datatype>, <field>, <fieldRef>, <component>, <componentRef>, or <message> element
in the source <fix> element may contain zero or more encoding information elements, but never contains two
encoding information elements with the same name. A common encoding attribute may be present in both an
<encodingInfo> element and in an <ASN1> element within the same <datatype>, <field>, <fieldRef>,
<component>, <componentRef>, or <message> element.

4.2.4 The attributes that affect the mapping to ASN.1 are called ASN.1 encoding attributes and are specified in
table 1.

Table 1 – ASN.1 encoding attributes

Name Type
In Repository

elementsa
Applicable to

FIX datatypesb
Description

Default
valuec

ASN.1-
specificd

minValue integer <datatype>
<field>
<fieldRef>

int
Pattern

minimum permitted value of the
integer datatype

negative
infinity

no

maxValue integer <datatype>
<field>
<fieldRef>

int
Pattern

maximum permitted value of the
integer datatype

positive
infinity

no

isUTF8 boolean <datatype>
<field>
<fieldRef>

data whether the data consists of
Unicode characters encoded in
UTF-8

false no

isNumeric boolean <datatype>,
<field>,
<fieldRef>

String whether all the permitted strings
consist of one or more digits ('0'
to '9') and can be regarded as
nonnegative numbers in
character string form

false no

minLength integer <datatype>
<field>
<fieldRef>

String
Pattern

minimum permitted length of the
string datatype (minimum
number of characters)

zero no

maxLength integer <datatype>,
<field>,
<fieldRef>

String
Pattern

maximum permitted length of the
string datatype (maximum
number of characters)

positive
infinity

no

numBits integer <datatype>
<field>
<fieldRef>

float
UTCTimeStamp
TZTimeStamp

size in bits 64 no

exponent integer <datatype>
<field>

float exponent (either a fixed exponent
for a fixed-point decimal number

0 no

12

<fieldRef> or the default exponent for a
variable-point decimal number)

isFixedPoint boolean <datatype>
<field>
<fieldRef>

float whether the exponent is fixed
(true) or variable (false)

false no

timeUnit integer <datatype>
<field>
<fieldRef>

UTCTimeOnly
UTCTimeStamp
TZTimeOnly
TZTimeStamp

time unit (0=second,
3=millisecond, 6=microsecond,
9=nanosecond,12=picosecond)

9 (nano-
second)

no

epoch string <datatype>
<field>
<fieldRef>

UTCDateOnly
UTCTimeStamp
LocalMktDate
TZTimeStamp

reference epoch (either date or
date and time) in ISO 8601 format

19700101 no

a This column indicates the FIX Repository elements in which the encoding information element (<ASN1> or <encodingInfo>)
containing the attribute may appear.
b This column indicates the FIX datatypes to which the attribute applies. An attribute is ignored when used with a FIX datatype to
which it does not apply.
c The default value is used when an attribute is applicable but is absent.
d This column indicates whether the ASN.1 encoding attribute is an encoding attribute specific to ASN.1 (i.e., it may only occur in
an <ASN1> element) or an encoding attribute common to all the standard FIX encodings (i.e., it may occur either in an
<encodingInfo> element or in an <ASN1> element).

EXAMPLE 1

The following <datatype> element describes an integer datatype which, when mapped to
ASN.1, will generate an ASN.1 INTEGER type with a permitted value range of 2 to 50.

 <datatype name="integer-with-bounds-ABC" ...>
 <XML base="xs:integer" .../>
 <ASN1 minValue="2" maxValue="50"/>
 </datatype>

EXAMPLE 2

The following <datatype> element describes a price datatype which, when mapped to ASN.1,
will generate a fixed-point decimal ASN.1 type, consisting of a mantissa with an implicit
exponent. The total precision of the mantissa will be 32 bits, and the exponent will be
fixed to -4.

 <datatype name="Price-fixed-ABC" base="float">
 <XML base="xs:decimal" .../>
 <ASN1 numBits="32" isFixedPoint="true" exponent="-4"/>
 </datatype>

13

EXAMPLE 3

The following <datatype> element describes a price datatype which, when mapped to ASN.1,
will generate a variable-point decimal ASN.1 type, consisting of a mantissa and an exponent.
The total precision of the mantissa will be 64 bits, and the exponent will have a default value
of -4.

 <datatype name="Price-floating-ABC" base="float">
 <XML base="xs:decimal" .../>
 <ASN1 numBits="64" isFixedPoint="false" exponent="-4"/>
 </datatype>

EXAMPLE 4

The following <datatype> element describes a UTC timestamp datatype which, when mapped
to ASN.1, will generate a UTC timestamp ASN.1 type, consisting of a single integer. The integer
will indicate the number of microseconds from the reference epoch, and its total precision will
be 64 bits.

 <datatype name="Timestamp-ABC" base="UTCTimeStamp">
 <XML base="xs:dateTime" .../>
 <ASN1 numBits="64" timeUnit="6"/>
 </datatype>

4.2.5 The following subclauses define the terms textual ASN.1 encoding attributes and effective ASN.1
encoding attributes, which are used in the remaining clauses of this technical specification.

4.2.6 The textual ASN.1 encoding attributes of a <datatype>, <field>, or <fieldRef> element are the
union of the ASN.1 encoding attributes present in its <ASN1> child element (if any) and the ASN.1 encoding
attributes present in its <encodingInfo> child element (if any), where an attribute present in the former child
element overrides any attribute with the same name present in the latter.

4.2.7 The effective ASN.1 encoding attributes of a <datatype> element are determined as follows:

a) if the <datatype> element does not have a base attribute, the effective ASN.1 encoding attributes are
its textual ASN.1 encoding attributes, completed by the default values specified in table 1 for any ASN.1
encoding attributes that are not present;

b) otherwise, the effective ASN.1 encoding attributes are the union of its textual ASN.1 encoding attributes
and the effective ASN.1 encoding attributes of the base <datatype> element, where a textual ASN.1
encoding attribute of this <datatype> element overrides any effective ASN.1 encoding attribute with
the same name of the base <datatype> element.

NOTE – This recursive definition assumes that the source <fix> element does not contain any circular references
to <datatype> elements via their base attribute.

14

4.2.8 The effective ASN.1 encoding attributes of a <field> element are the union of its textual ASN.1
encoding attributes and the effective ASN.1 encoding attributes of the <datatype> element referenced by the
type attribute of the <field> element, where a textual ASN.1 encoding attribute of the <field> element
overrides any effective ASN.1 encoding attribute with the same name of the <datatype> element.

4.2.9 The effective ASN.1 encoding attributes of a <fieldRef> element are the union of its textual ASN.1
encoding attributes and the effective ASN.1 encoding attributes of the <field> element referenced by the
name attribute of the <fieldRef> element, where a textual ASN.1 encoding attribute of the <fieldRef>
element overrides any effective ASN.1 encoding attribute with the same name of the <field> element.

4.3 Generation of ASN.1 names
4.3.1 This subclause specifies rules for the generation of various kinds of ASN.1 names (type names,
component identifiers of SEQUENCE types, enumerator identifiers of ENUMERATED types, and bit position
identifiers of BIT STRING types) from character strings.

NOTE – These name generation rules are similar to those specified in ITU-T Rec. X.694, 10.3, for the ASN.1 names generated
in the mapping from XML Schema to ASN.1.

4.3.2 The following transformations shall be applied, in order, to each character string being mapped to an
ASN.1 name, where each transformation except the first is applied to the result of the previous transformation:

1) the characters ' ' (SPACE), '.' (FULL STOP), and '_' (LOW LINE) shall be replaced by a '-' (HYPHEN-MINUS);
2) any character except 'A' to 'Z' (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), 'a' to 'z' (LATIN

SMALL LETTER A to LATIN SMALL LETTER Z), '0' to '9' (DIGIT ZERO to DIGIT NINE), and '-'
(HYPHEN-MINUS) shall be removed;

3) a sequence of two or more HYPHEN-MINUS characters shall be replaced with a single HYPHEN-MINUS;
4) any HYPHEN-MINUS characters occurring at the beginning or at the end of the character string shall be

removed;
5) if a character string that is to be used as a type name starts with a lower-case letter, the first letter shall

be converted to upper case;
6) if a character string that is to be used as a type name starts with a digit (DIGIT ZERO to DIGIT NINE), it

shall be prefixed with an 'X' (LATIN CAPITAL LETTER X);
7) if a character string that is to be used as an identifier starts with an upper-case letter, the first letter

shall be converted to lower case;
8) if a character string that is to be used as an identifier starts with a digit (DIGIT ZERO to DIGIT NINE), it

shall be prefixed with an 'x' (LATIN SMALL LETTER X);
9) if a character string that is to be used as a type name is empty, it shall be replaced by 'X' (LATIN CAPITAL

LETTER X);
10) if a character string that is to be used as an identifier is empty, it shall be replaced by 'x' (LATIN SMALL

LETTER X).

4.3.3 Depending on the kind of name being generated, exactly one of the subclauses 4.3.3.1 to 4.3.3.3 applies.

15

4.3.3.1 If the name being generated is the type name on the left side of an ASN.1 type assignment and the
character string produced by subclause 4.3.2 either:

• is one of the reserved words specified in ITU-T Rec. X.680, 11.27; or
• matches the name of one of the supporting ASN.1 types specified in subclause 5.4; or
• is identical to the type name on the left side of another ASN.1 type assignment previously generated

within the same or any other ASN.1 module;

then a suffix shall be appended to the character string produced by subclause 4.3.2. The suffix shall consist of a
HYPHEN-MINUS followed by the least positive integer (with no leading zeros) such that the resulting name
differs from the type name on the left side of any other ASN.1 type assignment previously generated within the
same or any other ASN.1 module.

4.3.3.2 If the name being generated is the identifier of a component of a SEQUENCE type and the character
string produced by subclause 4.3.2 is identical to the identifier of a previously generated component of the same
SEQUENCE type, then a suffix shall be appended to the character string produced by subclause 4.3.2. The suffix
shall consist of a HYPHEN-MINUS followed by the least positive integer (with no leading zeros) such that the
resulting identifier differs from the identifier of any previously generated component of that SEQUENCE type.

4.3.3.3 If the name being generated is the identifier of an item of an ENUMERATED or BIT STRING type and the
character string produced by subclause 4.3.2 is identical to the identifier of a previously generated item of the
same ENUMERATED or BIT STRING type, then a suffix shall be appended to the character string produced by
subclause 4.3.2. The suffix shall consist of a HYPHEN-MINUS followed by the least positive integer (with no
leading zeros) such that the resulting identifier differs from the identifier of any previously generated item of
that ENUMERATED or BIT STRING type.

16

5 Mapping of FIX datatypes

5.1 Datatypes explicitly defined via <datatype> elements
5.1.6 For each <datatype> element in the <datatypes> element of the source <fix> element, in order, an
ASN.1 type assignment shall be generated as specified in subclauses 5.1.6.1 to 5.1.6.2.

5.1.6.1 The type name on the left side of the type assignment shall be generated from the name indicated in
the <datatype> element in accordance with subclause 4.3.

5.1.6.2 The type expression on the right side of the type assignment shall be the target ASN.1 type expression
determined from the <datatype> element as specified in subclause 5.3.1.

EXAMPLE 1

The following <datatype> element:

 <datatype name="int" ...>
 <XML base="xs:integer" .../>
 </datatype>

will be mapped to ASN.1 as follows:

Source FIX datatype int

XSD datatype integer

ASN.1 type name Int

ASN.1 type expression INTEGER

Generated ASN.1 type assignment Int ::= INTEGER

EXAMPLE 2

The following <datatype> element:

 <datatype name="Length" baseType="int" ...>
 <XML base="xs:nonNegativeInteger" .../>
 </datatype>

will be mapped to ASN.1 as follows:

Source FIX datatype Length (derived from int)

XSD datatype nonNegativeInteger

ASN.1 type name Length

17

ASN.1 type expression INTEGER (0..MAX)

Generated ASN.1 type assignment Length ::= INTEGER (0..MAX)

5.2 Datatypes implicitly defined via <field> elements
5.2.1 The type of a FIX field in the source <fix> element is the FIX datatype determined from a <field>
element, its attributes, and its child elements, as specified in table 2.

Table 2 – Determination of the type of a FIX field from a <field> element

Case
Multiple-

valued
typea

<enum>
child

elementsb

enum
DataType
attributec

Different
encoding

attributesd

union
DataType
attributee

Type of the FIX field

1 no no no no no the FIX datatype indicated in the type attribute

2 no no no yes no
the FIX datatype indicated in the type attribute,
modified by the effective ASN.1 encoding attributes
of the <field> element

3 no yes no no no
the FIX datatype indicated in the type attribute,
restricted by the enumeration specified in the
<enum> child elements of this <field> element

4 no no yes no no

the FIX datatype indicated in the type attribute,
restricted by the enumeration specified in the
<enum> child elements of the <field> element
referenced by the enumDataType attribute

5 yes no no no no
the FIX datatype (either MultipleCharValue or
MultipleStringValue) with no restrictions on
the items of the space-separated list

6 yes yes no no no

the FIX datatype (either MultipleCharValue
or MultipleStringValue) where each item of
the space-separated list is required to belong to the
enumeration specified in the <enum> child
elements of this <field> element

7 yes no yes no no

the FIX datatype (either MultipleCharValue
or MultipleStringValue) where each item of
the space-separated list is required to belong to the
enumeration specified in the <enum> child
elements of the <field> element referenced by
the enumDataType attribute

8 no no no no yes
a union between the type determined in case 1
above and the FIX datatype indicated in the
unionDataType attribute

18

9 no no no yes yes
a union between the type determined in case 2
above and the FIX datatype indicated in the
unionDataType attribute

10 no yes no no yes
a union between the type determined in case 3
above and the FIX datatype indicated in the
unionDataType attribute

11 no no yes no yes
a union between the type determined in case 4
above and the FIX datatype indicated in the
unionDataType attribute

NOTE – Other combinations of column values do not occur

a This column indicates whether the type attribute of the <field> element is a multiple-valued datatype (either
MultipleCharValue or MultipleStringValue)
b This column indicates whether the <field> element has one or more <enum> child elements
c This column indicates whether the <field> element has an enumDataType attribute
d This column indicates whether the effective ASN.1 encoding attributes of the <field> element differ from the effective ASN.1
encoding attributes of the <datatype> element referenced by the type attribute
e This column indicates whether the <field> element has a unionDataType attribute

5.2.2 For each <field> element in the <fields> element of the source <fix> element, in order, that has
one or more <enum> child elements and either:

a) it has a type other than MultipleCharValue or MultipleStringValue (cases 3 and 10 of table 2);
or

b) it is referenced by the enumDataType attribute of a <field> element having a type other than
MultipleCharValue or MultipleStringValue (cases 4 and 11 of table 2),

an ASN.1 type assignment shall be generated as specified in subclauses 5.2.2.1 to 5.2.2.3.

5.2.2.1 The type name on the left side of the type assignment shall be generated from the name of the FIX field
with the "-enum" suffix appended, in accordance with subclause 4.3.

5.2.2.2 The type expression on the right side of the type assignment shall be an ENUMERATED type expression
containing one enumerator identifier for each <enum> child element of the <field> element, in order. Each
identifier shall be generated from the value of the symbolicName attribute of the corresponding <enum>
element in accordance with subclause 4.3. If the type of the <field> element is int or a datatype derived
from int, each identifier shall be followed by the value of the value attribute of the corresponding <enum>
element within round brackets.

NOTE – For a field having the FIX datatype Currency, if a list of <enum> child elements specifing a limited set of currency
codes is added to the <field> element, the type of the field will be mapped to an ENUMERATED type. The default
mapping of the Currency datatype (a IA5String type with a fixed size) will not be used for this particular field. The

19

same considerations apply to other FIX datatypes that rely on an externally defined codelist, such as Exchange,
Country, or Language.

5.2.2.3 An extension marker (...) shall be added after the last enumerator of the ENUMERATED type.

EXAMPLE 1

The following <field> element:

<field ... name="AdvSide" type="char" ... abbrName="AdvSide"
notReqXML="0">
 <enum value="B" symbolicName="Buy" ... />
 <enum value="S" symbolicName="Sell" .../>
 <enum value="T" symbolicName="Trade" .../>
 <enum value="X" symbolicName="Cross" .../>
</field>

will generate the following ASN.1 type assignment:

AdvSide-enum ::= ENUMERATED {
 buy,
 sell,
 trade,
 cross,
 ...
}

EXAMPLE 2

The following <field> element:

<field ... name="AllocStatus" type="int" ... abbrName="Stat"
notReqXML="0">
 <enum value="0" symbolicName="Accepted" .../>
 <enum value="1" symbolicName="BlockLevelReject" .../>
 <enum value="2" symbolicName="AccountLevelReject" .../>
 <enum value="3" symbolicName="Received" .../>
 <enum value="4" symbolicName="Incomplete" .../>
 <enum value="5" symbolicName="RejectedByIntermediary" .../>
 <enum value="6" symbolicName="AllocationPending" .../>
 <enum value="7" symbolicName="Reversed" .../>
 <enum value="8" symbolicName="CancelledByIntermediary" .../>
 <enum value="9" symbolicName="Claimed" .../>
 <enum value="10" symbolicName="Refused" .../>
 <enum value="11" symbolicName="PendingGiveUpApproval" .../>
 <enum value="12" symbolicName="Cancelled" .../>
 <enum value="13" symbolicName="PendingTakeUpApproval" .../>
 <enum value="14" symbolicName="ReversalPending" .../>

20

</field>

will generate the following ASN.1 type assignment:

AllocStatus-enum ::= ENUMERATED {
 accepted (0),
 blockLevelReject (1),
 accountLevelReject (2),
 received (3),
 incomplete (4),
 rejectedByIntermediary (5),
 allocationPending (6),
 reversed (7),
 cancelledByIntermediary (8),
 claimed (9),
 refused (10),
 pendingGiveUpApproval (11),
 cancelled (12),
 pendingTakeUpApproval (13),
 reversalPending (14),
 ...
}

5.2.3 For each <field> element in the <fields> element of the source <fix> element, in order, that has
one or more <enum> child elements and either:

a) it has a type of MultipleCharValue or MultipleStringValue (case 6 of table 2); or
a) it is referenced by the enumDataType attribute of a <field> element having a type of

MultipleCharValue or MultipleStringValue (case 7 of table 2),

an ASN.1 type assignment shall be generated as specified in subclauses 5.2.3.1 to 5.2.3.2.

5.2.3.1 The type name on the left side of the type assignment shall be generated from the name of the FIX field
with the "-bitmap" suffix appended, in accordance with subclause 4.3.

5.2.3.2 The type expression on the right side of the type assignment shall be a BIT STRING type expression
with a named bit list containing one bit position identifier for each <enum> child element of the <field>
element. Each identifier shall be generated from the value of the symbolicName attribute of the <enum>
element in accordance with subclause 4.3. The identifiers shall occur in the same order as the <enum>
elements, and the bit positions shall be consecutively numbered starting from zero.

EXAMPLE

The following <field> element:

<field ... id="276" name="QuoteCondition" type="MultipleStringValue"
...>

21

 <enum value="A" symbolicName="Open" .../>
 <enum value="B" symbolicName="Closed" ... />
 <enum value="C" symbolicName="ExchangeBest" ... />
 <enum value="D" symbolicName="ConsolidatedBest" .../>
</field>

will generate the following ASN.1 type assignment:

QuoteCondition-bitmap ::= BIT STRING {
 open (0),
 closed (1),
 exchangeBest (2),
 consolidateBest (3)
} (SIZE (4))

5.2.4 For each <field> element in the <fields> element of the source <fix> element, in order, that has a
unionDataType attribute (cases 8, 9, 10, and 11 of table 2) an ASN.1 type assignment shall be generated as
specified in subclauses 5.2.4.1 to 5.2.4.4.

5.2.4.1 The type name on the left side of the type assignment shall be generated from the name of the FIX field
with the "-union" suffix appended, in accordance with subclause 4.3.

5.2.4.2 The type expression on the right side of the type assignment shall be a CHOICE type expression
containing two alternatives.

5.2.4.3 The identifier of the first alternative of the CHOICE type shall be basic, and its type expression shall be
determined as specified in table 3.

Table 3 – Determination of the ASN.1 type of the first alternative of a CHOICE type

Case of
table 2

Type expression of the first alternative Reference

8 the type name on the left side of the ASN.1 type assignment generated from the
FIX datatype indicated in the type attribute of the <field> element

subclause 5.1.6

9 the target ASN.1 type expression determined from the <field> element subclause 5.3.2

10 the type name on the left side of the ENUMERATED type assignment generated
from the <enum> child elements of this <field> element

subclause 5.2.2

11 the type name on the left side of the ENUMERATED type assignment generated
from the <enum> child elements of the <field> element whose id is indicated
in the enumDataType attribute of this <field> element

subclause 5.2.2

22

NOTE – Since the ASN.1 type of the first alternative of the CHOICE type is determined at this stage of the mapping from
the <field> element, any textual ASN.1 encoding attribute of a <fieldRef> element referencing this <field>
element will have no effect on the first alternative of the CHOICE type.

5.2.4.4 The identifier of the second alternative of the CHOICE type shall be ext, and its type expression shall
be the type name on the left side of the ASN.1 type assignment generated from the FIX datatype indicated in the
unionDataType attribute as specified in subclause 5.1.6.

EXAMPLE 1

The following <field> element:

<field ... id="1778" name="EntitlementAttribType" type="int" ...
 unionDataType="Reserved4000Plus"/>

will generate the following ASN.1 type assignment:

EntitlementAttribType-union ::= CHOICE {
 basic Int,
 ext Reserved4000Plus
}

EXAMPLE 2

The following <field> element:

<field ... id="723" name="PosMaintResult" type="int" ...
 abbrName="Rslt" notReqXML="0"
unionDataType="Reserved100Plus">
 <enum value="0" symbolicName="SuccessfulCompletion" ... />
 <enum value="1" symbolicName="Rejected" .../>
 <enum value="99" symbolicName="Other" ... />
</field>

will generate the following ASN.1 type assignments:

PosMaintResult-enum ::= ENUMERATED {
 successfulCompletion (0),
 rejected (1),
 other (99),
 ...
}

PosMaintResult-union ::= CHOICE {
 basic PosMaintResult-enum,
 ext Reserved100Plus
}

23

EXAMPLE 3

The following <field> element:

<field ... id="368" name="QuoteEntryRejectReason" type="int" ...
 enumDatatype="300" unionDataType="Reserved100Plus"/>

will generate the following ASN.1 type assignment:

QuoteEntryRejectReason-union ::= CHOICE {
 basic QuoteRejectReason-enum,
 ext Reserved100Plus
}

5.3 Datatype mapping to ASN.1 types

5.3.1 Determination of the target ASN.1 type expression corresponding to a
<datatype> element

The target ASN.1 type expression corresponding to a <datatype> element shall be determined according the
following procedure:

1) Call source FIX datatype the FIX datatype described by the <datatype> element.
2) Scan table 4 from the top down, and select the first row that satisfies both of the following conditions:

a) the first cell of the row references either the source FIX datatype or one of its ancestor FIX
datatypes; and

b) the second cell of the row is either empty, or it references either the XSD datatype described by the
<XML> child element (if any) of the <datatype> element or one of its ancestor XSD datatypes.

3) Get the ASN.1 type expression from the third cell of the selected row.
4) If the ASN.1 type expression contains one or more names of ASN.1 encoding attributes, replace each of

them with the value of the effective ASN.1 encoding attribute of the <datatype> element with that
name.

5) If the ASN.1 type expression references one of the supporting ASN.1 types specified in a subclause of
subclause 5.4, the subclause that specifies the supporting ASN.1 type shall be invoked.

Table 4 – Datatype mapping rules

FIX datatype XSD datatype ASN.1 type expression

NumInGroup INTEGER (0..MAX)

DayOfMonth INTEGER (1..31)

Reserved100Plus INTEGER (100..MAX)

Reserved1000Plus INTEGER (1000..MAX)

Reserved4000Plus INTEGER (4000..MAX)

int nonNegativeInteger INTEGER (0..MAX)

24

int positiveInteger INTEGER (1..MAX)

int

when minValue is absent:

INTEGER
when minValue is present and maxValue is absent:

INTEGER (minValue..MAX)

when minValue and maxValue are both present:

INTEGER (minValue..maxValue)

float

when isFixedPoint is true and minValue is either
absent or less than zero:

Decimal-fixedexponent-numBits (see subclause
5.4.1)

when isFixedPoint is true and minValue is positive or
zero:

Decimal-fixedexponent-nonneg-numBits (see
subclause 5.4.2)

when isFixedPoint is false and minValue is either
absent or less than zero:

Decimal-varexponent-numBits (see subclause 5.4.3)

when isFixedPoint is false and minValue is positive or
zero:

Decimal-varexponent-nonneg-numBits (see
subclause 5.4.4)

(in all of the above names there is no hyphen before
"exponent")

UTCDateOnly UTCDateOnly-epoch (see subclause 5.4.5)

UTCTimeOnly UTCTimeOnly-timeUnit (see subclause 5.4.6)

UTCTimestamp

UTCTimestamp-timeUnit-epoch-numBits (see
subclause 5.4.7)

LocalMktDate LocalMktDate-epoch (see subclause 5.4.8)

TZTimeOnly TZTimeOnly-timeUnit (see subclause 5.4.9)

TZTimestamp

TZTimestamp-timeUnit-epoch-numBits (see
subclause 5.4.10)

data

when isUTF8 is false:

BinaryString (see subclause 5.4.11)

when isUTF8 is true:

UTF8String

XMLData XMLString (see subclause 5.4.12)

25

char IA5String (SIZE (1))

Country IA5String (SIZE (2))

Currency IA5String (SIZE (3))

String

when isNumeric is false:

when both minLength and maxLength are
absent:

IA5String
when minLength is present but maxLength is
absent:

IA5String (SIZE (minLength..MAX))

when minLength is absent but maxLength is
present:

IA5String (SIZE (0..maxLength))

when minLength and maxLength are present
and different:

IA5String (SIZE
(minLength..maxLength))

when minLength and maxLength are present
and equal:

IA5String (SIZE (minLength))

when isNumeric is true:

when minValue is absent:

INTEGER
when minValue is present and maxValue is
absent:

INTEGER (minValue..MAX)

when minValue and maxValue are both present:

INTEGER (minValue..maxValue)

Tenor Duration (see subclause 5.4.13)

MonthYear YearAndMonth (see subclause 5.4.14)

Pattern integer same as for the int datatype above

Pattern same as for the String datatype above

NOTE In this technical specification, some time-related datatypes are mapped to a single INTEGER type containing the
number of time units from a reference epoch, and others are mapped to a SEQUENCE type containing such an INTEGER
type along with another INTEGER type representing the time offset from UTC expressed in minutes. In both cases the
default time unit is the nanosecond, and the default reference epoch is midnight, January 1, 1970 UTC (19700101T000000

26

in ISO 8601 notation). Both the time unit and the reference epoch can be changed by using the ASN.1 encoding attributes
timeUnit and epoch in the source <fix> element.

5.3.2 Determination of the target ASN.1 type expression corresponding to a
<field> element

The target ASN.1 type expression corresponding to a <field> element shall be determined according the
following procedure:

1) Call source FIX datatype the FIX datatype described by the <datatype> element referenced by the
type attribute of the <field> element.

2) Scan table 4 from the top down, and select the first row that satisfies both of the following conditions:
a) the first cell of the row references either the source FIX datatype or one of its ancestor FIX

datatypes; and
b) the second cell of the row is either empty, or it references either the XSD datatype described by the

<XML> child element (if any) of the <datatype> element or one of its ancestor XSD datatypes.
3) Get the ASN.1 type expression from the third cell of the selected row.
4) If the ASN.1 type expression contains one or more names of ASN.1 encoding attributes, replace each of

them with the value of the effective ASN.1 encoding attribute of the <field> element with that name.
5) If the ASN.1 type expression references one of the supporting ASN.1 types specified in a subclause of

subclause 5.4, the subclause that specifies the supporting ASN.1 type shall be invoked.

5.3.3 Determination of the target ASN.1 type expression corresponding to a
<fieldref> element

The target ASN.1 type expression corresponding to a <fieldref> element shall be determined according the
following procedure:

1) Call source FIX datatype the FIX datatype described by the <datatype> element referenced by the
type attribute of the <field> element that is referenced by the name attribute of the <fieldRef>
element.

2) Scan table 4 from the top down, and select the first row that satisfies both of the following conditions:
a) the first cell of the row references either the source FIX datatype or one of its ancestor FIX

datatypes; and
b) the second cell of the row is either empty, or it references either the XSD datatype described by the

<XML> child element (if any) of the <datatype> element or one of its ancestor XSD datatypes.
3) Get the ASN.1 type expression from the third cell of the selected row.
4) If the ASN.1 type expression contains one or more names of ASN.1 encoding attributes, replace each of

them with the value of the effective ASN.1 encoding attribute of the <fieldref> element with that
name.

5) If the ASN.1 type expression references one of the supporting ASN.1 types specified in a subclause of
subclause 5.4, the subclause that specifies the supporting ASN.1 type shall be invoked.

5.4 Supporting ASN.1 types
NOTE – Only the supporting ASN.1 types that are actually needed will be generated, and each of them will be generated at
most once.

27

5.4.1 The Decimal-fixedN-S types
5.4.1.1 A Decimal-fixedN-S type holds a decimal value with a fixed exponent.

5.4.1.2 "Decimal-fixedN-S" is not an actual ASN.1 type name but a template for an ASN.1 type name, in
which S stands for a number indicating the size of the mantissa (either 32 or 64 bits), and N stands for the
exponent (fixed).

NOTE – There is no hyphen ('-') between "fixed" and N, because N can be a negative number and two consecutive
hyphens are not allowed in a name.

5.4.1.3 On the first invocation of this subclause 5.4.1 for given N and S, exactly one of the following ASN.1 type
assignments shall be generated, with the letter N replaced with the actual exponent specified in the subclause
that invokes this subclause 5.4.1:

• when S = 32

 Decimal-fixedN-32 ::= INTEGER (-2147483648..2147483647)
 --a mantissa with an implicit exponent of N

• when S = 64

 Decimal-fixedN-64 ::= INTEGER (-9223372036854775808..9223372036854775807)
 --a mantissa with an implicit exponent of N

NOTE – In BER, PER, and OER, these ASN.1 types have an efficient binary encoding, in which the two fields of the
SEQUENCE type (mantissa and exponent) are encoded as two separate binary integers. The exponent field is not
included in the encoding if it has the default value.

EXAMPLE

When S is 32 (indicating a size of 32 bits) and N is -4 (indicating a fixed exponent of -4), the
following ASN.1 type assignment will be generated:

Decimal-fixed-4-32 ::= INTEGER (-2147483648..2147483647)
 --a mantissa with an implicit exponent of -4

Notice the minus sign (-) before the character '4' in the name of the type, Decimal-fixed-4-
32.

5.4.2 The Decimal-fixedN-nonneg-S types
5.4.2.1 A Decimal-fixedN-nonneg-S type holds a non-negative decimal value with a fixed exponent.

5.4.2.2 "Decimal-fixedN-nonneg-S" is not an actual ASN.1 type name but a template for an ASN.1 type
name, in which S stands for a number indicating the size of the mantissa (either 32 or 64 bits), and N stands for
the exponent (fixed).

28

NOTE – There is no hyphen ('-') between "fixed" and N, because N can be a negative number and two consecutive
hyphens are not allowed in a name.

5.4.2.3 On the first invocation of this subclause 5.4.2 for given N and S, exactly one of the following ASN.1 type
assignments shall be generated, with the letter N replaced with the actual exponent specified in the subclause
that invokes this subclause 5.4.2:

• when S = 32

 Decimal-fixedN-nonneg-32 ::= INTEGER (0..4294967295)
 --a mantissa with an implicit exponent of N

• when S = 64

 Decimal-fixedN-nonneg-64 ::= INTEGER (0..18446744073709551615)
 --a mantissa with an implicit exponent of N

NOTE – In BER, PER, and OER, these ASN.1 types have an efficient binary encoding, in which the two fields of the
SEQUENCE type (mantissa and exponent) are encoded as two separate binary integers. The exponent field is not
included in the encoding if it has the default value.

EXAMPLE

When S is 32 (indicating a size of 32 bits) and N is -4 (indicating a fixed exponent of -4), the
following ASN.1 type assignment will be generated:

Decimal-fixed-4-nonneg-32 ::= INTEGER (0..4294967295)
 --a mantissa with an implicit exponent of -4

Notice the minus sign (-) before the character '4' in the name of the type, Decimal-fixed-4-
nonneg-32.

5.4.3 The Decimal-varN-S types
5.4.3.1 A Decimal-varN-S type holds a decimal value with a variable exponent. A default exponent is
specified in the ASN.1 schema and can be overridden in an instance of a message over the wire.

5.4.3.2 "Decimal-varN-S" is not an actual ASN.1 type name but a template for an ASN.1 type name, in which
S stands for a number indicating the size of the mantissa (either 32 or 64 bits), and N stands for the default
exponent.

NOTE – There is no hyphen (-) between "var" and N, because N can be a negative number and two consecutive hyphens
are not allowed in a name.

5.4.3.3 On the first invocation of this subclause 5.4.3 for given N and S, exactly one of the following ASN.1 type
assignments shall be generated, with the letter N replaced with the actual exponent specified in the subclause
that invokes this subclause 5.4.3:

29

• when S = 32:

 Decimal-varN-32 ::= SEQUENCE {
 mantissa INTEGER (-2147483648..2147483647),
 exponent INTEGER (-128..127) DEFAULT N
 }

• when S = 64:

 Decimal-varN-64 ::= SEQUENCE {
 mantissa INTEGER (-9223372036854775808..9223372036854775807),
 exponent INTEGER (-128..127) DEFAULT N
 }

NOTE – In BER, PER, and OER, these ASN.1 types have an efficient binary encoding, in which the two fields of the
SEQUENCE type (mantissa and exponent) are encoded as two separate binary integers. The exponent field is not
included in the encoding if it has the default value.

EXAMPLE

When S is 32 (indicating a size of 32 bits) and N is -4 (indicating a default exponent of -4), the
following ASN.1 type assignment will be generated:

Decimal-var-4-32 ::= SEQUENCE {
 mantissa INTEGER (-2147483648..2147483647),
 exponent INTEGER (-128..127) DEFAULT -4
}

Notice the minus sign (-) before the character '4' in the name of the type, Decimal-var-4-32.
These two characters represent the negative number -4. If the default exponent were the
positive number 4, the name of the type would be Decimal-var4-32.

5.4.4 The Decimal-varN-nonneg-S types
5.4.4.1 A Decimal-varN-nonneg-S type holds a non-negative decimal value with a variable exponent. A
default exponent is specified in the ASN.1 schema and can be overridden in an instance of a message over the
wire.

5.4.4.2 "Decimal-varN-nonneg-S " is not an actual ASN.1 type name but a template for an ASN.1 type name,
in which S stands for a number indicating the size of the mantissa (either 32 or 64 bits), and N stands for the
default exponent.

NOTE – There is no hyphen (-) between "var" and N, because N can be a negative number and two consecutive hyphens
are not allowed in a name.

5.4.4.3 On the first invocation of this subclause 5.4.4 for given N and S, exactly one of the following ASN.1 type
assignments shall be generated, with the letter N replaced with the actual exponent specified in the subclause
that invokes this subclause 5.4.4:

30

• when S = 32

 Decimal-varN-nonneg-32 ::= SEQUENCE {
 mantissa INTEGER (0..4294967295),
 exponent INTEGER (-128..127) DEFAULT N
 }

• when S = 64

 Decimal-varN-nonneg-64 ::= SEQUENCE {
 mantissa INTEGER (0..18446744073709551615),
 exponent INTEGER (-128..127) DEFAULT N
 }

NOTE – In BER, PER, and OER, these ASN.1 types have an efficient binary encoding, in which the two fields of the
SEQUENCE type (mantissa and exponent) are encoded as two separate binary integers. The exponent field is not
included in the encoding when it has the default value.

EXAMPLE

When S is 32 (indicating a size of 32 bits) and N is -4 (indicating a default exponent of -4), the
following ASN.1 type assignment will be generated:

Decimal-var-4-nonneg-32 ::= SEQUENCE {
 mantissa INTEGER (0..4294967295),
 exponent INTEGER (-128..127) DEFAULT -4
}

Notice the minus sign (-) before the character '4' in the name of the type, Decimal-var-4-
nonneg-32. These two characters represent the negative number -4. If the default exponent
were the positive number 4, the name of the type would be Decimal-var4-nonneg-32.

5.4.5 The UTCDateOnly-E types
5.4.5.1 The UTCDateOnly-E type holds a UTC date represented as a single integer that is the number of days
from a reference epoch.

5.4.5.2 "UTCDateOnly-E" is not an actual ASN.1 type name but a template for an ASN.1 type name, in which E
stands for a string indicating the reference epoch in ISO 8601 format.

5.4.5.3 On the first invocation of this subclause 5.4.5 for a given E, the following ASN.1 type assignment shall be
generated, with the letter E replaced with the actual epoch specified in the subclause that invokes this
subclause 5.4.5:

 UTCDateOnly-E ::= INTEGER (0..65535) --days from epoch E

31

5.4.6 The UTCTimeOnly-U types
5.4.6.1 A UTCTimeOnly-U type holds a UTC time-of-day represented as a single integer that is the number of
time units since midnight. The time unit can be a second, a millisecond, a microsecond, a nanosecond, or a
picosecond.

5.4.6.2 "UTCTimeOnly-U " is not an actual ASN.1 type name but a template for an ASN.1 type name, in which U
stands for a number denoting the time unit (0=second, 3=millisecond, 6=microsecond, 9=nanosecond,
12=picosecond).

5.4.6.3 On the first invocation of this subclause 5.4.6 for a given U, exactly one of the following ASN.1 type
assignments shall be generated:

• when U = 0

 UTCTimeOnly-0 ::= INTEGER (0..87839)
 --seconds since midnight

• when U = 3

 UTCTimeOnly-3 ::= INTEGER (0..87839999)
 --milliseconds since midnight

• when U = 6

 UTCTimeOnly-6 ::= INTEGER (0..87839999999)
 --microseconds since midnight

• when U = 9

 UTCTimeOnly-9 ::= INTEGER (0..87839999999999)
 --nanoseconds since midnight

• when U = 12

 UTCTimeOnly-12 ::= INTEGER (0..87839999999999999)
 --picoseconds since midnight

NOTE – The value ranges in the above type expressions allow for a leap second to be present at the end of a day (24 x 60 x
61 = 87840).

5.4.7 The UTCTimeStamp-U-E-S types
5.4.7.1 A UTCTimeStamp-U-E-S type holds a UTC date-and-time represented as a single integer that is the
number of time units from a reference epoch. The time unit can be a second, a millisecond, a microsecond, a
nanosecond, or a picosecond.

5.4.7.2 "UTCTimeStamp-U-E-S " is not an actual ASN.1 type name but a template for an ASN.1 type name, in
which U stands for a number denoting the time unit (0=second, 3=millisecond, 6=microsecond, 9=nanosecond,

32

12=picosecond), E stands for a string indicating the reference epoch in ISO 8601 format, and S stands for a
number indicating the size of the integer (either 32 or 64 bits).

5.4.7.3 On the first invocation of this subclause 5.4.7 for given U, E, and S, exactly one of the following ASN.1
type assignments shall be generated, with the letter E replaced with the actual epoch specified in the subclause
that invokes this subclause 5.4.7:

• when U = 0 and S = 32

 UTCTimeStamp-0-E-32 ::= INTEGER (0..4294967295)
 --seconds from epoch E

• when U = 0 and S = 64

 UTCTimeStamp-0-E-64 ::= INTEGER (0..18446744073709551615)
 --seconds from epoch E

• when U = 3 and S = 32

 UTCTimeStamp-3-E-32 ::= INTEGER (0..4294967295)
 --milliseconds from epoch E

• when U = 3 and S = 64

 UTCTimeStamp-3-E-64 ::= INTEGER (0..18446744073709551615)
 --milliseconds from epoch E

• when U = 6 and S = 32

 UTCTimeStamp-6-E-32 ::= INTEGER (0..4294967295)
 --microseconds from epoch E

• when U = 6 and S = 64

 UTCTimeStamp-6-E-64 ::= INTEGER (0..18446744073709551615)
 --microseconds from epoch E

• when U = 9 and S = 32

 UTCTimeStamp-9-E-32 ::= INTEGER (0..4294967295)
 --nanoseconds from epoch E

• when U = 9 and S = 64

 UTCTimeStamp-9-E-64 ::= INTEGER (0..18446744073709551615)
 --nanoseconds from epoch E

• when U = 12 and S = 32

33

 UTCTimeStamp-12-E-32 ::= INTEGER (0..4294967295)
 --picoseconds from epoch E

• when U = 12 and S = 64

 UTCTimeStamp-12-E-64 ::= INTEGER (0..18446744073709551615)
 --picoseconds from epoch E

5.4.8 The LocalMktDate-E types
5.4.8.1 The LocalMktDate-E type holds a local date represented as a single integer that is the number of days
from a reference epoch.

5.4.8.2 "LocalMktDate-E" is not an actual ASN.1 type name but a template for an ASN.1 type name, in which
E stands for a string indicating the reference epoch in ISO 8601 format.

5.4.8.3 On the first invocation of this subclause 5.4.8 for a given E, the following ASN.1 type assignment shall be
generated, with the letter E replaced with the actual epoch specified in the subclause that invokes this
subclause 5.4.8:

 LocalMktDate-E ::= INTEGER (0..65535) --days from epoch E

5.4.9 The TZTimeOnly-U types
5.4.9.1 A TZTimeOnly-U type holds a time-of-day with timezone information. The time is expressed as UTC
time with an optional time offset from UTC. The time-of-day is represented as a single integer that is the number
of time units since midnight. The time unit can be a second, a millisecond, a microsecond, a nanosecond, or a
picosecond. The time offset is expressed in minutes (either positive or negative).

5.4.9.2 "TZTimeOnly-U" is not an actual ASN.1 type name but a template for an ASN.1 type name, in which U
stands for a number denoting the time unit (0=second, 3=millisecond, 6=microsecond, 9=nanosecond,
12=picosecond).

5.4.9.3 On the first invocation of this subclause 5.4.9 for a given U, exactly one of the following ASN.1 type
assignments shall be generated:

• when U = 0

 TZTimeOnly-0 ::= SEQUENCE {
 time INTEGER (0..87839),
 --seconds since midnight
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 3

 TZTimeOnly-3 ::= SEQUENCE {
 time INTEGER (0..87839999),

34

 --milliseconds since midnight
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 6

 TZTimeOnly-6 ::= SEQUENCE {
 time INTEGER (0..87839999999),
 --microseconds since midnight
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 9

 TZTimeOnly-9 ::= SEQUENCE {
 time INTEGER (0..87839999999999),
 --nanoseconds since midnight
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 12

 TZTimeOnly-12 ::= SEQUENCE {
 time INTEGER (0..87839999999999999),
 --picoseconds since midnight
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

5.4.10 The TZTimeStamp-U-E-S types
5.4.10.1 A TZTimeStamp-U-E-S type holds a date-and-time with timezone information. The time can
be expressed as UTC time with an optional time offset from UTC. The date-and-time is represented as a single
integer that is the number of time units from a reference epoch. The time unit can be a second, a millisecond, a
microsecond, a nanosecond, or a picosecond. The time offset is expressed in minutes (either positive or
negative).

5.4.10.2 "TZTimeStamp-U-E-S" is not an actual ASN.1 type name but a template for an ASN.1 type
name, in which U stands for a number denoting the time unit (0=second, 3=millisecond, 6=microsecond,
9=nanosecond, 12=picosecond), E stands for a string indicating the reference epoch in ISO 8601 format, and S
stands for a number indicating the size of the integer (either 32 or 64 bits).

5.4.10.3 On the first invocation of this subclause 5.4.10 for given U, E, and S, exactly one of the following
ASN.1 type assignments shall be generated, with the letter E replaced with the actual string specified in the
subclause that invokes this subclause 5.4.10:

35

• when U = 0 and S = 32

 TZTimeStamp-0-E-32 ::= SEQUENCE {
 timeStamp INTEGER (0..4294967295),
 --seconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 0 and S = 64

 TZTimeStamp-0-E-64 ::= SEQUENCE {
 timeStamp INTEGER (0..18446744073709551615),
 --seconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 3 and S = 32

 TZTimeStamp-3-E-32 ::= SEQUENCE {
 timeStamp INTEGER (0..4294967295),
 --milliseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 3 and S = 64

 TZTimeStamp-3-E-64 ::= SEQUENCE {
 timeStamp INTEGER (0..18446744073709551615),
 --milliseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 6 and S = 32

 TZTimeStamp-6-E-32 ::= SEQUENCE {
 timeStamp INTEGER (0..4294967295),
 --microseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 6 and S = 64

 TZTimeStamp-6-E-64 ::= SEQUENCE {
 timeStamp INTEGER (0..18446744073709551615),

36

 --microseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 9 and S = 32

 TZTimeStamp-9-E-32 ::= SEQUENCE {
 timeStamp INTEGER (0..4294967295),
 --nanoseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 9 and S = 64

 TZTimeStamp-9-E-64 ::= SEQUENCE {
 timeStamp INTEGER (0..18446744073709551615),
 --nanoseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 12 and S = 32

 TZTimeStamp-12-E-32 ::= SEQUENCE {
 timeStamp INTEGER (0..4294967295),
 --picoseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

• when U = 12 and S = 64

 TZTimeStamp-12-E-64 ::= SEQUENCE {
 timeStamp INTEGER (0..18446744073709551615),
 --picoseconds from epoch E
 timeOffset INTEGER (-900..900) DEFAULT 0
 --minutes from UTC
 }

5.4.11 The BinaryString type
5.4.11.1 The BinaryString type holds a string of arbitrary octets.

5.4.11.2 On the first invocation of this subclause 5.4.11, the following ASN.1 type assignment shall be
generated:

 BinaryString ::= OCTET STRING

37

5.4.12 The XMLString type
5.4.12.1 The XMLString type holds an XML fragment, i.e., either an XML element or two or more
concatenated XML elements.

5.4.12.2 On the first invocation of this subclause 5.4.12, the following ASN.1 type assignment shall be
generated:

 XMLString ::= UTF8String

5.4.13 The Duration type
5.4.13.1 The Duration type holds a number of days, weeks, months, or years.

5.4.13.2 On the first invocation of this subclause 5.4.13, the following ASN.1 type assignment shall be
generated:

 Duration ::= CHOICE {
 days INTEGER (1..MAX),
 weeks INTEGER (1..MAX),
 months INTEGER (1..MAX),
 years INTEGER (1..MAX)
 }

5.4.14 The YearAndMonth type
5.4.14.1 The YearAndMonth type holds a year, a month, and optionally either a day or a week.

5.4.14.2 On the first invocation of this subclause 5.4.14, the following ASN.1 type assignment shall be
generated:

 YearAndMonth ::= SEQUENCE {
 year INTEGER (0..4095),
 month INTEGER (1..12),
 dayOrWeek CHOICE {
 day INTEGER (1..31),
 week INTEGER (1..5)
 } OPTIONAL
 }

5.5 Datatype mapping summary
Tables 5, 6, and 7 contain a summary of the mapping to ASN.1 of all the datatypes defined in the FIX 5.0 SP2
Unified Repository.

Table 5 – Datatype mapping summary (part 1)

FIX datatype
FIX base
datatype

XSD datatype
min

Value
max
Value

min
Leng
th

max
Leng
th

is
UTF8 ASN.1 type

38

int integer -infinity +infinity INTEGER

Length int nonNegative
Integer

 INTEGER (0..MAX)

TagNum int nonNegative
Integer

 INTEGER (0..MAX)

SeqNum int positive
Integer

 INTEGER (1..MAX)

NumInGroup int (none) INTEGER (0..MAX)

DayOfMonth int (none) INTEGER (1..31)

char string IA5String (SIZE (1))

Boolean char string BOOLEAN

String string 0 +infinity IA5String

Multiple
CharValue

String string 0 +infinity IA5String

Multiple
StringValue

String string 0 +infinity IA5String

Country String string IA5String (SIZE (2))

Currency String string IA5String (SIZE (3))

Exchange String string 0 +infinity IA5String

data String string false BinaryString

Pattern (none) IA5String

Tenor Pattern string Duration

MonthYear String string YearAndMonth

Reserved100P
lus

Pattern integer INTEGER (100..MAX)

Reserved1000
Plus

Pattern integer INTEGER (1000..MAX)

Reserved4000
Plus

Pattern integer INTEGER (4000..MAX)

XMLData String string XMLString

Language String language 0 +infinity IA5String

field with
enumerated
values

(any) (any) an ENUMERATED type and/or a
BIT STRING type

field with a
union datatype

(any) (any) a CHOICE type

39

Table 6 – Datatype mapping summary (part 2)

FIX datatype
FIX base
datatype

XSD datatype
fixed
Point

exponent numBits ASN.1 type

float decimal false 0 64 Decimal-var0-64

Qty float decimal false 0 64 Decimal-var0-64

Price float decimal false 0 64 Decimal-var0-64

PriceOffset float decimal false 0 64 Decimal-var0-64

Amt float decimal false 0 64 Decimal-var0-64

Percentage float decimal false 0 64 Decimal-var0-64

Table 7 – Datatype mapping summary (part 3)

FIX datatype
FIX base
datatype

XSD
datatype

time
Unit

epoch numBits ASN.1 type

UTCDateOnly String date 19700101 UTCDateOnly-19700101

UTCTimeOnly String time 9 UTCTimeOnly-9

UTCTimestamp String dateTime 9 19700101 64 UTCTimeStamp-9-19700101-64

LocalMktDate String date 19700101 LocalMktDate-19700101

TZTimeOnly String time 9 TZTimeOnly-9

TZTimestamp String dateTime 9 19700101 64 TZTimeStamp-9-19700101-64

40

6 Mapping of FIX messages
6.1 The <messages> element in the source <fix> element contains a list of <message> elements each
describing one FIX message. A message consists of a sequence of fields and/or components, each either
required or optional.

6.2 For each <message> element in the <messages> element of the source <fix> element, in order, an
ASN.1 type assignment shall be generated as specified in subclauses 6.2.1 to 6.2.2.

6.2.1 The type name on the left side of the type assignment shall be generated from the name of the FIX
message with the "-message" suffix appended, in accordance with subclause 4.3.

6.2.2 The type expression on the right side of the type assignment shall be determined as specified in
subclauses 7.3.2 to 7.3.9 for the mapping of a <component> element not consisting of a repeating group. The
type expression shall be preceded by a textual ASN.1 tag of the context-specific class with the tag number equal
to the id attribute of the <message> element.

EXAMPLE

The NewOrderList message of the FIX Repository v.5.0 SP2 will generate the following ASN.1
type assignment:

NewOrderList-message ::= [15] SEQUENCE {
 standardHeader [1024] StandardHeader,
 listID [APPLICATION 66] IA5String,
 bidID [APPLICATION 390] IA5String
 OPTIONAL,
 clientBidID [APPLICATION 391] IA5String
 OPTIONAL,
 progRptReqs [APPLICATION 414] ProgRptReqs-enum
 OPTIONAL,
 bidType [APPLICATION 394] BidType-enum,
 progPeriodInterval [APPLICATION 415] INTEGER
 OPTIONAL,
 cancellationRights [APPLICATION 480]
 CancellationRights-enum OPTIONAL,
 moneyLaunderingStatus [APPLICATION 481]
 MoneyLaunderingStatus-enum OPTIONAL,
 registID [APPLICATION 513] IA5String
 OPTIONAL,
 listExecInstType [APPLICATION 433]
 ListExecInstType-enum OPTIONAL,
 listExecInst [APPLICATION 69] IA5String
 OPTIONAL,
 contingencyType [APPLICATION 1305]
 ContingencyType-union OPTIONAL,
 encodedListExecInst [APPLICATION 353]
 BinaryString OPTIONAL,

41

 allowableOneSidednessPct [APPLICATION 765] Percentage
 OPTIONAL,
 allowableOneSidednessValue [APPLICATION 766] Amt
 OPTIONAL,
 allowableOneSidednessCurr [APPLICATION 767] Currency
 OPTIONAL,
 totNoOrders [APPLICATION 68] INTEGER,
 lastFragment [APPLICATION 893]
 LastFragment-enum OPTIONAL,
 rootParties-list [1031] RootParties-list
 OPTIONAL,
 listOrdGrp-list [2030] ListOrdGrp-list,
 throttleInst [APPLICATION 1685] ThrottleInst-enum
 OPTIONAL,
 standardTrailer [1025] StandardTrailer,
 ...
}

which contains references to the following ASN.1 type assignments separately generated from
<component>, <field>, and <datatype> elements:

StandardHeader ::= SEQUENCE {
 applVerID [APPLICATION 1128] ApplVerID-enum OPTIONAL,
 *** etc. ***
}

StandardTrailer ::= SEQUENCE {
 signature [APPLICATION 89] BinaryString OPTIONAL
}

ApplVerID-enum ::= ENUMERATED {
 fIX27,
 fIX30,
 fIX40,
 fIX41,
 fIX42,
 fIX43,
 fIX44,
 fIX50,
 fIX50SP1,
 fIX50SP2,
 ...
}

ProgRptReqs-enum ::= ENUMERATED {
 buySideRequests (1),
 sellSideSends (2),
 realTimeExecutionReports (3),
 ...

42

}

BidType-enum ::= ENUMERATED {
 nonDisclosed (1),
 disclosed (2),
 noBiddingProcess (3),
 ...
}

CancellationRights-enum ::= ENUMERATED {
 yes,
 noExecutionOnly,
 noWaiverAgreement,
 noInstitutional,
 ...
}

MoneyLaunderingStatus-enum ::= ENUMERATED {
 passed,
 notChecked,
 exemptBelowLimit,
 exemptMoneyType,
 exemptAuthorised,
 ...
}

ListExecInstType-enum ::= ENUMERATED {
 immediate,
 waitForInstruction,
 sellDriven,
 buyDrivenCashTopUp,
 buyDrivenCashWithdraw,
 ...
}

ContingencyType-enum ::= ENUMERATED {
 oneCancelsTheOther (1),
 oneTriggersTheOther (2),
 oneUpdatesTheOtherAbsolute (3),
 oneUpdatesTheOtherProportional (4),
 bidAndOffer (5),
 bidAndOfferOCO (6),
 ...
}

ContingencyType-union ::= CHOICE {
 basic ContingencyType-enum,
 ext Reserved100Plus
}

43

ThrottleInst-enum ::= ENUMERATED {
 rejectIfThrottleLimitExceeded (0),
 queueIfThrottleLimitExceeded (1),
 ...
}

ListOrdGrp-list ::= SEQUENCE OF ListOrdGrp

ListOrdGrp ::= SEQUENCE {
 clOrdID [APPLICATION 11] IA5String,
 secondaryClOrdID [APPLICATION 526] IA5String OPTIONAL,
 *** etc. ***
 ...
}

LastFragment-enum ::= ENUMERATED {
 notLastMessage,
 lastMessage,
 ...
}

RootParties-list ::= SEQUENCE OF RootParties

RootParties ::= SEQUENCE {
 rootPartyID [APPLICATION 1117] IA5String
 OPTIONAL,
 rootPartyIDSource [APPLICATION 1118] PartyIDSource-enum
 OPTIONAL,
 rootPartyRole [APPLICATION 1119] PartyRole-enum
 OPTIONAL,
 rootSubParties-list [2097] RootSubParties-list
 OPTIONAL,
 ...
}

RootSubParties-list ::= SEQUENCE OF RootSubParties

RootSubParties ::= SEQUENCE {
 rootPartySubID [APPLICATION 1121] IA5String
 OPTIONAL,
 rootPartySubIDType [APPLICATION 1122] PartySubIDType-union
 OPTIONAL,
 ...
}

PartyIDSource-enum ::= ENUMERATED {
 uKNationalInsuranceOrPensionNumber,
 uSSocialSecurityNumber,

44

 uSEmployerOrTaxIDNumber,
 australianBusinessNumber,
 *** etc. ***
 ...
}

PartyRole-enum ::= ENUMERATED {
 executingFirm (1),
 brokerOfCredit (2),
 clientID (3),
 clearingFirm (4),
 *** etc. ***
 ...
}

PartySubIDType-enum ::= ENUMERATED {
 firm (1),
 person (2),
 system (3),
 application (4),
 fullLegalNameOfFirm (5),
 postalAddress (6),
 *** etc. ***
 ...
}

PartySubIDType-union ::= CHOICE {
 basic PartySubIDType-enum,
 ext Reserved4000Plus
}

Reserved100Plus ::= INTEGER (100..MAX)

BinaryString ::= OCTET STRING

Amt ::= Decimal-var0-64

Currency ::= IA5String (SIZE (3))

45

7 Mapping of a FIX component
7.1 This clause applies as explicitly invoked by other clauses of this technical specification to generate either
one or two ASN.1 type assignments corresponding to a FIX component.

7.2 The <components> element in the source <fix> element contains a list of <component> elements
each describing one FIX component. A component consists of:

a) a sequence of fields and/or child components, each either required or optional; or
b) a repeating group, which in turn contains a sequence of fields and/or child components, each either

required or optional

7.3 On the first invocation of this clause 7 for a given <component> element not consisting of a repeating
group (case (a) of subclause 7.2), an ASN.1 type assignment shall be generated as specified in subclauses 7.3.1 to
7.3.9.

7.3.1 The type name on the left side of the type assignment shall be generated from the name of the FIX
component in accordance with subclause 4.3.

7.3.2 The type expression on the right side of the type assignment shall be a SEQUENCE type expression
having one component for each <fieldRef> and <componentRef> child element of the <component>
element, in order, with the exceptions specified in subclause 7.3.3.

7.3.3 No components of the SEQUENCE type shall be generated for the following FIX fields:

• any FIX field of type Length that has a non-empty associatedDataTag attribute;
• the BeginString field (FIX field id = 8);
• the BodyLength field (FIX field id = 9);
• the MsgType field (FIX field id = 35);
• the CheckSum field (FIX field id = 10).

7.3.4 The identifier of each component of the SEQUENCE type shall be generated from:

a) the name attribute of the <componentRef> element with the "-list" suffix appended, in accordance
with subclause 4.3, if the referenced component consists of a repeating group;

b) the name attribute of the <fieldRef> or <componentRef> element in accordance with subclause 4.3,
otherwise.

7.3.5 The type expression of each component of the SEQUENCE type corresponding to a <fieldRef>
element shall be determined as follows:

a) if the effective ASN.1 encoding attributes of the <fieldRef> element differ from the effective ASN.1
encoding attributes of the <datatype> element referenced by the type attribute of the referenced
<field> element, the type expression shall be the target ASN.1 type expression determined from the
<fieldRef> element as specified in subclause 5.3.3;

46

b) otherwise, the type expression shall be determined as specified in table 8.

Table 8 – Determination of the ASN.1 type of a SEQUENCE component

Case of
table 2

Type expression of the component Reference

1, 2, 5 the type name on the left side of the ASN.1 type assignment generated from the
FIX datatype indicated in the type attribute of the referenced <field> element

subclause 5.1.6

3 the type name on the left side of the ENUMERATED type assignment generated
from the referenced <field> element

subclause 5.2.2

4 the type name on the left side of the ENUMERATED type assignment generated
from the <field> element whose id is indicated in the enumDataType
attribute of the referenced <field> element

subclause 5.2.2

6 the type name on the left side of BIT STRING type assignment generated from
the referenced <field> element

subclause 5.2.3

7

the type name on the left side of the BIT STRING type assignment generated
from the <field> element whose id is indicated in the enumDataType
attribute of the referenced <field> element

subclause 5.2.3

8, 9, 10, 11 the type name on the left side of the CHOICE type assignment generated from a
union of two datatypes

subclause 5.2.4

NOTE – The inclusion of case 2 of table 2 in the first row of table 8 accounts for the (possibly rare) case in which:

a) the effective ASN.1 encoding attributes of the <field> element differ from the effective ASN.1 encoding
attributes of the <datatype> element; and

b) the effective ASN.1 encoding attributes of the <fieldRef> element differ from the effective ASN.1 encoding
attributes of the <field> element; but

c) the effective ASN.1 encoding attributes of the <fieldRef> element are identical to the effective ASN.1 encoding
attributes of the <datatype> element.

7.3.6 The type expression of each component of the SEQUENCE type corresponding to a <componentRef>
element shall be the type name on the left side of the ASN.1 type assignment generated by invoking this clause
7 for the referenced <component> element.

7.3.7 The type expression of each component of the SEQUENCE type corresponding to a <fieldRef>
element shall be preceded by a textual ASN.1 tag of the APPLICATION class with the tag number equal to the
id attribute of the referenced <field> element.

7.3.8 The type expression of each component of the SEQUENCE type corresponding to a <componentRef>
element shall be preceded by a textual ASN.1 tag of the context-specific class with the tag number equal to the
id attribute of the referenced <component> element.

47

NOTE – The purpose of this subclause is to provide a textual ASN.1 tag corresponding to the FIX component that is
guaranteed to be unique in the context of the SEQUENCE type, while keeping a clear distinction between textual ASN.1
tags assigned to FIX fields (APPLICATION tags) and textual ASN.1 tags assigned to FIX components (context-specific tags).

7.3.9 If the ASN.1 type assignment is being generated from either a <message> element or a <component>
element consisting of a repeating group, an extension marker (...) shall be added after the last component of
the SEQUENCE type.

EXAMPLE 1

The CommissionData component of the FIX Repository v.5.0 SP2 will generate the following
ASN.1 type assignment:

CommissionData ::= SEQUENCE {
 commission [APPLICATION 12] Amt OPTIONAL,
 commType [APPLICATION 13] CommType-enum OPTIONAL,
 commCurrency [APPLICATION 479] Currency OPTIONAL,
 fundRenewWaiv [APPLICATION 497] FundRenewWaiv-enum OPTIONAL
}

which contains references to the following ASN.1 type assignments separately generated from
<field> and <datatype> elements:

CommType-enum ::= ENUMERATED {
 perUnit,
 percent,
 absolute,
 percentageWaivedCashDiscount,
 percentageWaivedEnhancedUnits,
 pointsPerBondOrContract,
 ...
}

FundRenewWaiv-enum ::= ENUMERATED { no, yes, ... }

Amt ::= Decimal-var0-64

Currency ::= IA5String (SIZE (3))

7.4 On the first invocation of this clause 7 for a given <component> element consisting of a repeating group
(case (b) of subclause 7.2), two ASN.1 type assignments shall be generated as specified in subclauses 7.4.1 to
7.4.4.

7.4.1 The first type assignment shall be generated in the same way as is specified in subclause 7.3 for a
<component> element not consisting of a repeating group (case (a) of subclause 7.2), except that every
mention of a child element of the <component> element within that subclause shall be understood as referring
to a child element of the <repeatingGroup> element under the <component> element.

48

7.4.2 The type name on the left side of the second type assignment shall be generated from the name of the
FIX component with the "-list" suffix appended, in accordance with subclause 4.3.

7.4.3 The type expression on the right side of the second type assignment shall be a SEQUENCE OF type
expression.

7.4.4 The type expression of the component of the SEQUENCE OF type shall be the type name on the left side
of the first ASN.1 type assignment.

EXAMPLE 1

The NestedParties component of the FIX Repository v.5.0 SP2 will generate the following
ASN.1 type assignments:

NestedParties-list ::= SEQUENCE OF NestedParties

NestedParties ::= SEQUENCE {
 nestedPartyID [APPLICATION 524] IA5String
 OPTIONAL,
 nestedPartyIDSource [APPLICATION 525] PartyIDSource-enum
 OPTIONAL,
 nestedPartyRole [APPLICATION 538] PartyRole-enum
 OPTIONAL,
 nstdPtysSubGrp-list [2078] NstdPtysSubGrp-list
 OPTIONAL,
 ...
}

which contain references to the following ASN.1 type assignments separately generated from
<component>, <field>, and <datatype> elements:

NstdPtysSubGrp-list ::= SEQUENCE OF NstdPtysSubGrp

NstdPtysSubGrp ::= SEQUENCE {
 nestedPartySubID [APPLICATION 545] IA5String
 OPTIONAL,
 nestedPartySubIDType [APPLICATION 805] PartySubIDType-union
 OPTIONAL,
 ...
}

PartyIDSource-enum ::= ENUMERATED {
 uKNationalInsuranceOrPensionNumber,
 uSSocialSecurityNumber,
 uSEmployerOrTaxIDNumber,
 australianBusinessNumber,
 *** etc. ***
 ...
}

49

PartyRole-enum ::= ENUMERATED {
 executingFirm (1),
 brokerOfCredit (2),
 clientID (3),
 clearingFirm (4),
 *** etc. ***
 ...
}

PartySubIDType-enum ::= ENUMERATED {
 firm (1),
 person (2),
 system (3),
 application (4),
 fullLegalNameOfFirm (5),
 postalAddress (6),
 *** etc. ***
 ...
}

PartySubIDType-union ::= CHOICE {
 basic PartySubIDType-enum,
 ext Reserved4000Plus
}

Reserved4000Plus ::= INTEGER (4000..MAX)

	1 Introduction
	2 References
	3 Definitions
	4 General provisions
	4.1 Generation of the ASN.1 schema
	4.2 ASN.1 encoding attributes
	4.3 Generation of ASN.1 names

	5 Mapping of FIX datatypes
	5.1 Datatypes explicitly defined via <datatype> elements
	5.2 Datatypes implicitly defined via <field> elements
	5.3 Datatype mapping to ASN.1 types
	5.3.1 Determination of the target ASN.1 type expression corresponding to a <datatype> element
	5.3.2 Determination of the target ASN.1 type expression corresponding to a <field> element
	5.3.3 Determination of the target ASN.1 type expression corresponding to a <fieldref> element

	5.4 Supporting ASN.1 types
	5.4.1 The Decimal-fixedN-S types
	5.4.2 The Decimal-fixedN-nonneg-S types
	5.4.3 The Decimal-varN-S types
	5.4.4 The Decimal-varN-nonneg-S types
	5.4.5 The UTCDateOnly-E types
	5.4.6 The UTCTimeOnly-U types
	5.4.7 The UTCTimeStamp-U-E-S types
	5.4.8 The LocalMktDate-E types
	5.4.9 The TZTimeOnly-U types
	5.4.10 The TZTimeStamp-U-E-S types
	5.4.11 The BinaryString type
	5.4.12 The XMLString type
	5.4.13 The Duration type
	5.4.14 The YearAndMonth type

	5.5 Datatype mapping summary

	6 Mapping of FIX messages
	7 Mapping of a FIX component

